- You are here
- Everything Explained.Today
- A-Z Contents
- P
- PR
- PRO
- PROB
- PROBA
- PROBAB
- PROBABI
- Probability distribution

In probability theory and statistics, a **probability distribution** is the mathematical function that gives the probabilities of occurrence of different possible **outcomes** for an experiment.^{[1]} ^{[2]} It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).^{[3]}

For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for, and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather condition in a future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc.^{[4]}

A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by

*\Omega*

*p*

*p(*2*)*+*p(*4*)*+*p(*6*)*=1*/*6+1*/*6+1*/*6=1*/*2*.*

In contrast, when a random variable takes values from a continuum then typically, any individual outcome has probability zero and only events that include infinitely many outcomes, such as intervals, can have positive probability. For example, consider measuring the weight of a piece of ham in the supermarket, and assume the scale has many digits of precision. The probability that it weighs *exactly* 500 g is zero, as it will most likely have some non-zero decimal digits. Nevertheless, one might demand, in quality control, that a package of "500 g" of ham must weigh between 490 g and 510 g with at least 98% probability, and this demand is less sensitive to the accuracy of measurement instruments.

Continuous probability distributions can be described in several ways. The probability density function describes the infinitesimal probability of any given value, and the probability that the outcome lies in a given interval can be computed by integrating the probability density function over that interval. An alternative description of the distribution is by means of the cumulative distribution function, which describes the probability that the random variable is no larger than a given value (i.e., for some *x*). The cumulative distribution function is the area under the probability density function from

-inf*ty*

A probability distribution can be described in various forms, such as by a probability mass function or a cumulative distribution function. One of the most general descriptions, which applies for continuous and discrete variables, is by means of a probability function

*P\colon*l{A} → R

l{A}

The probability function *P* can take as argument subsets of the sample space itself, as in the coin toss example, where the function *P* was defined so that *P* and *P*. However, because of the widespread use of random variables, which transform the sample space into a set of numbers (e.g.,

R

N

The above probability function only characterizes a probability distribution if it satisfies all the Kolmogorov axioms, that is:

*P(X**\in**E)**\ge*0 *\forall**E**\in*l{A}

*P(X**\in**E)**\le*1 *\forall**E**\in*l{A}

1

*P(X**\in*s*qcup*_{i}*E*_{i}*)*=*\sum*_{i}*P(X**\in**E*_{i)}

*\{**E*_{i}*\}*

*(X,*l{A},*P)*

*X*

l{A}

*E**\subset**X*

*P*

*E**\in*l{A}

Probability distributions are generally divided into two classes. A **discrete probability distribution** is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function. On the other hand, **continuous probability distributions** are applicable to scenarios where the set of possible outcomes can take on values in a continuous range (e.g. real numbers), such as the temperature on a given day. In the case of real numbers, the continuous probability distribution is the cumulative distribution function. In general, in the continuous case, probabilities are described by a probability density function, and the probability distribution is by definition the integral of the probability density function.^{[10]} ^{[11]} The normal distribution is a commonly encountered continuous probability distribution. More complex experiments, such as those involving stochastic processes defined in continuous time, may demand the use of more general probability measures.

A probability distribution whose sample space is one-dimensional (for example real numbers, list of labels, ordered labels or binary) is called univariate, while a distribution whose sample space is a vector space of dimension 2 or more is called multivariate. A univariate distribution gives the probabilities of a single random variable taking on various different values; a multivariate distribution (a joint probability distribution) gives the probabilities of a random vector – a list of two or more random variables – taking on various combinations of values. Important and commonly encountered univariate probability distributions include the binomial distribution, the hypergeometric distribution, and the normal distribution. A commonly encountered multivariate distribution is the multivariate normal distribution.

Besides the probability function, the cumulative distribution function, the probability mass function and the probability density function, the moment generating function and the characteristic function also serve to identify a probability distribution, as they uniquely determine an underlying cumulative distribution function.^{[12]}

Some key concepts and terms, widely used in the literature on the topic of probability distributions, are listed below.

**Probability function**: describes the probability

*P(X**\in**E)*

*E,*

**function that gives the probability that a discrete random variable is equal to some value.**

a table that displays the frequency of various outcomes **in a sample**.

**Relative frequency distribution**: a frequency distribution where each value has been divided (normalized) by a number of outcomes in a sample (i.e. sample size).**Discrete probability distribution function**: general term to indicate the way the total probability of 1 is distributed over**all**various possible outcomes (i.e. over entire population) for discrete random variable.**Cumulative distribution function**

function evaluating the probability that

*X*

*x*

for discrete random variables with a finite set of values.

**Probability density function (pdf):**function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a*relative likelihood*that the value of the random variable would equal that sample.**Continuous probability distribution function**: most often reserved for continuous random variables.**Cumulative distribution function**: function evaluating the probability that

*X*

*x*

**Quantile function**: the inverse of the cumulative distribution function. Gives

*x*

*q*

*X*

*x*

**Mode**: for a discrete random variable, the value with highest probability; for a continuous random variable, a location at which the probability density function has a local peak.**Support**: set of values that can be assumed with non-zero probability by the random variable. For a random variable

*X*

*R*_{X}

**Tail**:^{[13]}the regions close to the bounds of the random variable, if the pmf or pdf are relatively low therein. Usually has the form

*X**>**a*

*X**<**b*

**Head**: the region where the pmf or pdf is relatively high. Usually has the form

*a**<**X**<**b*

**Expected value**or**mean**: the weighted average of the possible values, using their probabilities as their weights; or the continuous analog thereof.**Median**

the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half.

the second moment of the pmf or pdf about the mean; an important measure of the dispersion of the distribution.

**Standard deviation**: the square root of the variance, and hence another measure of dispersion.**Quantile**

the q-quantile is the value

*x*

*P(X**<**x)*=*q*

**Symmetry**: a property of some distributions in which the portion of the distribution to the left of a specific value (usually the median) is a mirror image of the portion to its right.**Skewness**

a measure of the extent to which a pmf or pdf "leans" to one side of its mean. The third standardized moment of the distribution.

a measure of the "fatness" of the tails of a pmf or pdf. The fourth standardized moment of the distribution.

See also: Probability mass function and Categorical distribution.

A **discrete probability distribution** is the probability distribution of a random variable that can take on only a countable number of values.^{[14]} In the case where the range of values is countably infinite, these values have to decline to zero fast enough for the probabilities to add up to 1. For example, if

*\operatorname{P}(X*=*n)*=*\tfrac{*1*}{*2^{n}}

Well-known discrete probability distributions used in statistical modeling include the Poisson distribution, the Bernoulli distribution, the binomial distribution, the geometric distribution, and the negative binomial distribution. Additionally, the discrete uniform distribution is commonly used in computer programs that make equal-probability random selections between a number of choices.

When a sample (a set of observations) is drawn from a larger population, the sample points have an empirical distribution that is discrete, and which provides information about the population distribution.

Equivalently to the above, a discrete random variable can be defined as a random variable whose cumulative distribution function (cdf) increases only by jump discontinuities—that is, its cdf increases only where it "jumps" to a higher value, and is constant between those jumps. Note however that the points where the cdf jumps may form a dense set of the real numbers. The points where jumps occur are precisely the values which the random variable may take.

Consequently, a discrete probability distribution is often represented as a generalized probability density function involving Dirac delta functions, which substantially unifies the treatment of continuous and discrete distributions. This is especially useful when dealing with probability distributions involving both a continuous and a discrete part.^{[15]}

For a discrete random variable *X*, let *u*_{0}, *u*_{1}, ... be the values it can take with non-zero probability. Denote

-1 | |

\Omega | |

i=X |

*(u*_{i)=}*\{\omega:**X(\omega)*=*u*_{i\},}*i*=0*,*1*,*2*,*...

These are disjoint sets, and for such sets

*P\left(*c*up*_{i}*\Omega*_{i\right)=\sum}_{i}*P(\Omega*_{i)=\sum}_{i}*P(X*=*u*_{i)=1.}

It follows that the probability that *X* takes any value except for *u*_{0}, *u*_{1}, ... is zero, and thus one can write *X* as

*X(\omega)*=*\sum*_{i}*u*_{i}

1 | |

\Omega_{i} |

*(\omega)*

except on a set of probability zero, where

1_{A}

A special case is the discrete distribution of a random variable that can take on only one fixed value; in other words, it is a deterministic distribution. Expressed formally, the random variable

*X*

*x*

*P(X{*=*}x)*=1*.*

See also: Probability density function.

A **continuous probability distribution** is a probability distribution whose support is an uncountable set, such as an interval in the real line.^{[17]} They are uniquely characterized by a cumulative distribution function that can be used to calculate the probability for each subset of the support. There are many examples of continuous probability distributions: normal, uniform, chi-squared, and others.

A random variable

*X*

*f:*R → *[*0*,*inf*ty]*

*I**\subset*R

*X*

*I*

*f*

*I*

*I*=*[a,**b]*

*\operatorname{P}\left[a**\le**X**\le**b\right]*=

b | |

\int | |

a |

*f(x)**dx
*

*X*

*a*

*a**\le**X**\le**a*

*F(x)*=*\operatorname{P}\left[*-inf*ty**<**X**\le**x\right]*=

x | |

\int | |

-infty |

*f(x)**dx
*

- is non-decreasing;
*F(x)* - ;
0

*\le**F(x)**\le*1 - and
*\lim*_{x}*F(x)*=0;*\lim*_{x}*F(x)*=1 - ; and
*\operatorname**P(a**<**X**\le**b)*=*F(b)*-*F(a)* - is continuous due to the Riemann integral properties.
*F(x)*^{[20]}

*F(x)*

*F*

*F*

It is often necessary to generalize the above definition for more arbitrary subsets of the real line. In these contexts, a continuous probability distribution is defined as a probability distribution with a cumulative distribution function that is absolutely continuous. Equivalently, it is a probability distribution on the real numbers that is absolutely continuous with respect to the Lebesgue measure. Such distributions can be represented by their probability density functions. If

*X*

*f(x)*

*A**\subset*R

*\operatorname{P}\left[X**\in**A\right]*=*\int*_{A}*f(x)**d\mu
*

*\mu*

Note on terminology: some authors use the term "continuous distribution" to denote distributions whose cumulative distribution functions are continuous, rather than absolutely continuous. These distributions are the ones

*\mu*

*\mu\{x\}*=0

*x*

See main article: Probability space and Probability measure.

*X*

*(\Omega,*l{F},P*)*

*(l{X},l{A})*

*\{\omega\in\Omega\mid**X(\omega)\in**A\}*

*X*_{*P}

*X*

*(l{X},l{A})*

*X*_{*P}=P*X*^{-1}

Continuous and discrete distributions with support on

R^{k}

N^{k}

*\gamma:**[a,**b]* → R^{n}

R^{n}

One example is shown in the figure to the right, which displays the evolution of a system of differential equations (commonly known as the Rabinovich–Fabrikant equations) that can be used to model the behaviour of Langmuir waves in plasma.^{[26]} When this phenomenon is studied, the observed states from the subset are as indicated in red. So one could ask what is the probability of observing a state in a certain position of the red subset; if such a probability exists, it is called the probability measure of the system.^{[27]}

This kind of complicated support appears quite frequently in dynamical systems. It is not simple to establish that the system has a probability measure, and the main problem is the following. Let

*t*_{1}*\ll**t*_{2}*\ll**t*_{3}

*O*

*O*

*[t*_{1,t}_{2]}

*[t*_{2,t}_{3]}

*\sin(t)*

*t* → inf*ty*

Note that even in these cases, the probability distribution, if it exists, might still be termed "continuous" or "discrete" depending on whether the support is uncountable or countable, respectively.

See main article: Pseudo-random number sampling.

Most algorithms are based on a pseudorandom number generator that produces numbers *X* that are uniformly distributed in the half-open interval [0,1). These [[random variate]]s *X* are then transformed via some algorithm to create a new random variate having the required probability distribution. With this source of uniform pseudo-randomness, realizations of any random variable can be generated.

For example, suppose

*U*

0*<**p**<*1

*{\displaystyle**X*=*{\begin{cases}*1*,&{if*

so that

rm{P}(X=1)=rm{P}(U<p)=*p,
rm{P}(X=0)*=rm{P}(U\geq*p)*=1-*p.*

This random variable X has a Bernoulli distribution with parameter

*p*

For a distribution function

*F*

*F*^{inv}

*F*

*U*

*{U\leq**F(x)}*=*{F*^{inv}*(U)\leq**x}.*

For example, suppose a random variable that has an exponential distribution

*F(x)*=1-*e*^{-λ}

*\begin{align}
F(x)*=*u**&\Leftrightarrow*1-*e*^{-λ}=*u**\* *&\Leftrightarrow**e*^{-λ}=1-*u**\\&\Leftrightarrow*-λ*x*=ln*(*1-*u)**\* *&\Leftrightarrow**x*=

-1 | |

λ |

ln*(*1-*u)
\end{align}*

so

*F*^{inv}*(u)*=

-1 | |

λ |

ln*(*1-*u)*

*U*

*U(*0*,*1*)*

*X*

*X*=*F*^{inv}*(U)*=

-1 | |

λ |

ln*(*1-*U)*

λ

A frequent problem in statistical simulations (the Monte Carlo method) is the generation of pseudo-random numbers that are distributed in a given way.

See main article: List of probability distributions.

The concept of the probability distribution and the random variables which they describe underlies the mathematical discipline of probability theory, and the science of statistics. There is spread or variability in almost any value that can be measured in a population (e.g. height of people, durability of a metal, sales growth, traffic flow, etc.); almost all measurements are made with some intrinsic error; in physics, many processes are described probabilistically, from the kinetic properties of gases to the quantum mechanical description of fundamental particles. For these and many other reasons, simple numbers are often inadequate for describing a quantity, while probability distributions are often more appropriate.

The following is a list of some of the most common probability distributions, grouped by the type of process that they are related to. For a more complete list, see list of probability distributions, which groups by the nature of the outcome being considered (discrete, continuous, multivariate, etc.)

All of the univariate distributions below are singly peaked; that is, it is assumed that the values cluster around a single point. In practice, actually observed quantities may cluster around multiple values. Such quantities can be modeled using a mixture distribution.

- Normal distribution (Gaussian distribution), for a single such quantity; the most commonly used continuous distribution

- Log-normal distribution, for a single such quantity whose log is normally distributed
- Pareto distribution, for a single such quantity whose log is exponentially distributed; the prototypical power law distribution

- Discrete uniform distribution, for a finite set of values (e.g. the outcome of a fair die)
- Continuous uniform distribution, for continuously distributed values

- Basic distributions:
- Bernoulli distribution, for the outcome of a single Bernoulli trial (e.g. success/failure, yes/no)
- Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences
- Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
- Geometric distribution, for binomial-type observations but where the quantity of interest is the number of failures before the first success; a special case of the negative binomial distribution

- Related to sampling schemes over a finite population:
- Hypergeometric distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed number of total occurrences, using sampling without replacement
- Beta-binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed number of total occurrences, sampling using a Pólya urn model (in some sense, the "opposite" of sampling without replacement)

- Categorical distribution, for a single categorical outcome (e.g. yes/no/maybe in a survey); a generalization of the Bernoulli distribution
- Multinomial distribution, for the number of each type of categorical outcome, given a fixed number of total outcomes; a generalization of the binomial distribution
- Multivariate hypergeometric distribution, similar to the multinomial distribution, but using sampling without replacement; a generalization of the hypergeometric distribution

- Poisson distribution, for the number of occurrences of a Poisson-type event in a given period of time
- Exponential distribution, for the time before the next Poisson-type event occurs
- Gamma distribution, for the time before the next k Poisson-type events occur

- Rayleigh distribution, for the distribution of vector magnitudes with Gaussian distributed orthogonal components. Rayleigh distributions are found in RF signals with Gaussian real and imaginary components.
- Rice distribution, a generalization of the Rayleigh distributions for where there is a stationary background signal component. Found in Rician fading of radio signals due to multipath propagation and in MR images with noise corruption on non-zero NMR signals.

- Chi-squared distribution, the distribution of a sum of squared standard normal variables; useful e.g. for inference regarding the sample variance of normally distributed samples (see chi-squared test)
- Student's t distribution, the distribution of the ratio of a standard normal variable and the square root of a scaled chi squared variable; useful for inference regarding the mean of normally distributed samples with unknown variance (see Student's t-test)
- F-distribution, the distribution of the ratio of two scaled chi squared variables; useful e.g. for inferences that involve comparing variances or involving R-squared (the squared correlation coefficient)

See main article: Conjugate prior.

- Beta distribution, for a single probability (real number between 0 and 1); conjugate to the Bernoulli distribution and binomial distribution
- Gamma distribution, for a non-negative scaling parameter; conjugate to the rate parameter of a Poisson distribution or exponential distribution, the precision (inverse variance) of a normal distribution, etc.
- Dirichlet distribution, for a vector of probabilities that must sum to 1; conjugate to the categorical distribution and multinomial distribution; generalization of the beta distribution
- Wishart distribution, for a symmetric non-negative definite matrix; conjugate to the inverse of the covariance matrix of a multivariate normal distribution; generalization of the gamma distribution
^{[29]}

- The cache language models and other statistical language models used in natural language processing to assign probabilities to the occurrence of particular words and word sequences do so by means of probability distributions.
- In quantum mechanics, the probability density of finding the particle at a given point is proportional to the square of the magnitude of the particle's wavefunction at that point (see Born rule). Therefore, the probability distribution function of the position of a particle is described by

*P*_{a\le}*(t)*=

b | |

\int | |

a |

*d**x|\Psi(x,t)|*^{2}

- Probabilistic load flow in power-flow study explains the uncertainties of input variables as probability distribution and provides the power flow calculation also in term of probability distribution.
^{[31]} - Prediction of natural phenomena occurrences based on previous frequency distributions such as tropical cyclones, hail, time in between events, etc.
^{[32]}

- Conditional probability distribution
- Joint probability distribution
- Quasiprobability distribution
- Empirical probability distribution
- Histogram
- Riemann–Stieltjes integral application to probability theory

- 10.1016/j.ejmp.2014.05.002. 25059432. Data distributions in magnetic resonance images: A review. Physica Medica. 30. 7. 725–741. 2014. den Dekker. A. J.. Sijbers. J..
- Book: Vapnik, Vladimir Naumovich. 1998. Statistical Learning Theory. John Wiley and Sons.

- Field Guide to Continuous Probability Distributions, Gavin E. Crooks.

- Book: Everitt, Brian.. The Cambridge dictionary of statistics. 2006. Cambridge University Press. 978-0-511-24688-3 . 3rd. Cambridge, UK. 161828328.
- Book: Ash, Robert B.. Basic probability theory. 2008. Dover Publications. 978-0-486-46628-6. Dover. Mineola, N.Y. . 66–69. 190785258.
- Book: Probability and statistics: the science of uncertainty. Evans . Michael . 2010. W.H. Freeman and Co. Rosenthal . Jeffrey S. . 978-1-4292-2462-8 . 2nd. New York. 38. 473463742.
- Book: Ross, Sheldon M.. A first course in probability. Pearson. 2010.
- Web site: 2020-04-26. List of Probability and Statistics Symbols. 2020-09-10. Math Vault. en-US.
- Book: A modern introduction to probability and statistics : understanding why and how. 2005. Springer. Dekking, Michel, 1946-. 978-1-85233-896-1. London. 262680588.
- Chapters 1 and 2 of
- Book: Walpole, R.E.. Myers, R.H.. Myers, S.L.. Ye, K.. 1999. Probability and statistics for engineers. Prentice Hall.
- Book: Billingsley, P.. 1986. Probability and measure. Wiley. 9780471804789.
- Web site: 1.3.6.1. What is a Probability Distribution . 2020-09-10 . www.itl.nist.gov.
- Book: DeGroot. Morris H. . Schervish. Mark J.. Probability and Statistics. Addison-Wesley. 2002.
- Shephard, N.G.. 1991. From characteristic function to distribution function: a simple framework for the theory. Econometric Theory. 7. 4. 519–529. 10.1017/S0266466600004746.
- More information and examples can be found in the articles Heavy-tailed distribution, Long-tailed distribution, fat-tailed distribution
- Book: Erhan, Çınlar. Probability and stochastics. 2011. Springer. 9780387878591. New York. 51. 710149819.
- Khuri. André I.. March 2004. Applications of Dirac's delta function in statistics. International Journal of Mathematical Education in Science and Technology. en. 35. 2. 185–195. 10.1080/00207390310001638313. 122501973. 0020-739X.
- Book: Fisz, Marek . Probability Theory and Mathematical Statistics . 3rd . John Wiley & Sons . 1963 . 0-471-26250-1 . 104.
- Book: Introduction to probability models. Sheldon M. Ross. 2010. Elsevier.
- Chapter 3.2 of
- Web site: Bourne. Murray. 11. Probability Distributions - Concepts. 2020-09-10. www.intmath.com. en-us.
- Chapter 7 of Book: Burkill, J.C.. 1978. A first course in mathematical analysis. Cambridge University Press.
- See Theorem 2.1 of, or Lebesgue's decomposition theorem. The section
- Delta-function_representation

- Book: W., Stroock, Daniel. Probability theory : an analytic view. 1999. Cambridge University Press. 978-0521663496. Rev.. Cambridge [England]. 11. 43953136.
- Book: Kolmogorov, Andrey. Foundations of the theory of probability. Chelsea Publishing Company. 1950. New York, USA. 21–24. 1933.
- Web site: Axioms of Probability. Joyce. David. 2014. Clark University. December 5, 2019.
- Book: Alligood, K.T.. Sauer, T.D.. Yorke, J.A.. 1996. Chaos: an introduction to dynamical systems. Springer.
- Rabinovich, M.I.. Fabrikant, A.L.. 1979. Stochastic self-modulation of waves in nonequilibrium media. J. Exp. Theor. Phys. 77. 617–629. 1979JETP...50..311R.
- Section 1.9 of Book: Ross, S.M.. Peköz, E.A.. 2007. A second course in probability.
- Book: Walters, Peter. An Introduction to Ergodic Theory. 2000. Springer.
- Book: Bishop, Christopher M.. Pattern recognition and machine learning. 2006. Springer. 0-387-31073-8. New York. 71008143.
- Book: Chang, Raymond.. Physical chemistry for the chemical sciences. Thoman, John W., Jr., 1960-. 2014. 978-1-68015-835-9. [Mill Valley, California]. 403–406. 927509011.
- Book: 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Chen. P.. Chen. Z.. Bak-Jensen. B.. April 2008. 978-7-900714-13-8. 1586–1591. Probabilistic load flow: A review. 10.1109/drpt.2008.4523658. 18669309.
- Book: Maity, Rajib. Statistical methods in hydrology and hydroclimatology. 978-981-10-8779-0. Singapore. 1038418263. 2018-04-30.